Formations of finite monoids and formal languages: Eilenberg's variety theorem revisited

نویسندگان

  • Adolfo Ballester-Bolinches
  • Jean-Éric Pin
  • Xaro Soler-Escrivà
چکیده

We present an extension of Eilenberg’s variety theorem, a wellknown result connecting algebra to formal languages. We prove that there is a bijective correspondence between formations of finite monoids and certain classes of languages, the formations of languages. Our result permits to treat classes of finite monoids which are not necessarily closed under taking submonoids, contrary to the original theory. We also prove a similar result for ordered monoids. This paper is the first step of a programme aiming at exploring the connections between the formations of finite groups and regular languages. The starting point is Eilenberg’s variety theorem [10], a celebrated result of the 1970’s which underscores the importance of varieties of finite monoids (also called pseudovarieties) in the study of formal languages. Since varieties of finite groups are special cases of varieties of finite monoids, varieties seems to be a natural structure to study languages recognized by finite groups. However, in finite group theory, varieties are challenged by another notion. Although varieties are incontestably a central notion, many results are better formulated in the setting of formations. This raised the question whether Eilenberg’s variety theorem could be extended to a “formation theorem”. The aim of this paper is to give a positive answer to this question. To our surprise, the resulting theorem holds not only for group formations but Departament d’Àlgebra, Universitat de València, C/ Dr. Moliner, 50 46100Burjassot(València), Spain LIAFA, Université Paris VII and CNRS, Case 7014, F-75205 Paris Cedex 13, France. Dpt. d’Estad́ıstica i Investigació Operativa, Universitat d’Alacant, Sant Vicent del Raspeig, Ap. Correus 99, E – 03080 Alacant. ∗The authors are supported by Proyecto MTM2010-19938-C03-01 from MICINN (Spain). The second author is supported by the project ANR 2010 BLAN 0202 02 FREC. The third author was supported by the Grant PAID-02-09 from Universitat Politècnica de València.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eilenberg theorems for many-sorted formations

A theorem of Eilenberg establishes that there exists a bi-jection between the set of all varieties of regular languages and the set of all varieties of finite monoids. In this article after defining, for a fixed set of sorts S and a fixed S-sorted signature Σ, the concepts of formation of congruences with respect to Σ and of formation of Σ-algebras, we prove that the algebraic lattices of all Σ...

متن کامل

Formations of Monoids, Congruences, and Formal Languages

The main goal in this paper is to use a dual equivalence in automata theory started in [RBBCL13] and developed in [BBCLR14] to prove a general version of the Eilenberg-type theorem presented in [BBPSE12]. Our principal results confirm the existence of a bijective correspondence between formations of (non-necessarily finite) monoids, that is, classes of monoids closed under taking epimorphic ima...

متن کامل

An Eilenberg Theorem for Arbitrary Languages

In algebraic language theory one investigates formal languages by relating them to finite algebras. The most important result along these lines is Eilenberg’s celebrated variety theorem [7]: varieties of languages (classes of regular finite-word languages closed under boolean operations, derivatives and preimages of monoid morphisms) correspond bijectively to pseudovarieties of monoids (classes...

متن کامل

Minimal Noncommutative Varieties and Power Varieties

A variety of finite monoids is a class of finite monoids closed under taking submonoids, quotients and finite direct products. A language L is a subset of a finitely generated free monoid. The variety theorem of Eilenberg sets up a one to one correspondence between varieties of finite monoids and classes of languages called, appropriately, varieties of languages. Recent work in variety theory h...

متن کامل

Duality and the equational theory of regular languages

On one hand, the Eilenberg variety theorem establishes a bijective correspondence between varieties of formal languages and varieties of finite monoids. On the other hand, the Reiterman theorem states that varieties of finite monoids are exactly the classes of finite monoids definable by profinite equations. Together these two theorems give a structural insight in the algebraic theory of finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012